Summary of problem statement
A sequence $a$ is generated as follows:
- $a_1 = 1$
- $a_2 = 6$
- $a_i = (a_{i-1} + a_{i+1})/2 – 2, \forall i \geq 2$.
Given $n$ ($1 \leq n \leq 10^{18}$), calculate $a_n \mod (10^9+ 7)$.
O(n) solution
Using properties of equalities, we convert: $a_i=(a_{i-1} + a_{i+1})/2 – 2$ to:
$a_{i+1} = 2a_i – a_{i-1} + 4$.
From this formula we derive a trivial $O(N)$ algorithm to calculate $a_n$:
typedef long long ll;
int Compute(ll n) {
vector<int> a(n + 1);
a[1] = 1;
a[2] = 6;
for (int i = 3; i < n; ++i) {
a[i + 1] = ((ll) 2 * a[i] - a[i - 1] + 4) % 1000000007;
}
return a[n];
}
O(log n) solution
To speed up, we should think about matrix exponentiation (similar to the way we calculate the kth Fibonacci number).
First, the matrix representation of $a$ is:
$\begin{aligned}\left[ \begin{array}{c} a_{i+1} \\ a_i \\ 1 \end{array} \right] = \left[ \begin{array}{ccc} 2 & -1 & 4 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right] . \left[ \begin{array}{c} a_i \\ a_{i-1} \\ 1 \end{array} \right] \end{aligned}$
Let’s put in exponentiation:
$\left[ \begin{array}{c} a_{i+1} \\ a_i \\ 1 \end{array} \right] = \left[ \begin{array}{ccc} 2 & -1 & 4 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right]^{i-1} . \left[ \begin{array}{c} a_2 \\ a_1 \\ 1 \end{array} \right]$
Substitute $i$ with $n$, $a_2$ with $6$, and $a_1$ with $1$:
$\left[ \begin{array}{c} a_{n+1} \\ a_n \\ 1 \end{array} \right] = \left[ \begin{array}{ccc} 2 & -1 & 4 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right]^{n-1} . \left[ \begin{array}{c} 6 \\ 1 \\ 1 \end{array} \right]$
Matrix exponentiation $A^n$ can be done using $\log n$ multiplications. Hence it brings down the total time complexity to $O(\log n)$. Please find sample code below:
#define MOD 1000000007
typedef vector<vector<int>> Matrix;
Matrix MatrixMul(const Matrix& a, const Matrix& b) {
int m = a.size(), n = a[0].size(), k = b[0].size();
assert(n == b.size());
Matrix c(m, vector<int>(k, 0));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < k; ++j) {
for (int t = 0; t < n; ++t) {
c[i][j] += ((ll) a[i][t] * b[t][j]) % MOD;
c[i][j] %= MOD;
}}}
return c;
}
Matrix MatrixPow(const Matrix& a, ll n) {
if (n == 1) return a;
Matrix tmp = MatrixPow(a, n/2);
if (n % 2 == 0) return MatrixMul(tmp, tmp);
else return MatrixMul(MatrixMul(tmp, tmp), a);
}
int Compute(int n) {
if (n == 1) return 1;
Matrix A = { {2, MOD - 1, 4}, {1, 0, 0}, {0, 0, 1} };
Matrix P = { {6}, {1}, {1} };
Matrix res = MatrixMul(MatrixPow(A, n - 1), P);
return res[1][0];
}